TUDOMÁNY

Óriási föld alatti fához hasonlító köpenycsóvák táplálják a világ vulkánjait

A tudomány közelebb jutott a szupervulkánok rejtélyének megoldásához.


Réunion szigete, Franciaország három tengerentúli megyéjének egyike a világ egyik legcsodálatosabb turistaparadicsoma. Az Indiai-óceán nyugati részén, Madagaszkártól mintegy 700 km-re délkeletre fekvő sziget hajdan kalózairól volt hirhedt, később itt talált ihletet a nagy szimbolista költő, Charles Baudelaire korszakalkotó kötetéhez, a Romlás virágaihoz, és ma is lenyűgöző a sziget növény- és állatvilága.

Ugyanakkor különleges geológiai adottságairól is nevezetes: Réunion a Föld egyik köpenycsóváján ül. Ez nem más, mint egy rendkívül magas hőfokú szikla, amely a földköpeny mély rétegeiből indul, és felizzítja a tektonikus lemezek alapjait. Ennek köszönhető, hogy Réunion két hatalmas vulkánjának egyike, a Piton de la Fournaise (szó szerint "a kemence csúcsa") a Föld egyik legaktívabb tűzhányója – írja a Quanta Magazine.

2012-ben geofizikusok és szeizmológusok készítették el a csóva térképét az Indiai-óceán fenekén elhelyezett óriási szeizmométer-hálózat segítésével. A kutatócsoport közel 10 éves munka után, az idén júniusban a Nature Geoscience-ben tette közzé felfedezését.

Kiderült, hogy nem egyszerű „oszlopról” van szó, hanem egy hatalmas köpenycsóva-fáról, amely a Föld olvadt szívének köpenyéből emelkedik ki, olyan felforrósodott ágszerű szerkezettel, amely mintha átlósan nőne ki belőle.

Amint ezek az ágak közelítenek a földkéreghez, kisebb, függőleges ágak sarjadnak belőlük. Ezek a szuperforró csóvák, amelyek alapul szolgálnak a felszíni vulkanikus forrpontoknak.

A Réunion alatti struktúra felfedezése előtt fél évvel ugyancsak ilyen csóvastruktúrákat találtak Afrika alatt. Ezek együtt azt sugallják, hogy a csóvák még egyedibbek lehetnek, és sokkal bonyolultabb hátterük lehet, mint azt a róluk készített korábbi modellek feltételezték.

A réunioni fa "gyökere", amelyről a tudósok már korábban is tudtak, lehet, hogy a Földdel egyidős. Feltételezve, hogy az ágai több millió év után is nőnek, a kutatók betekinthetnek bolygónk jövőjébe.

Karin Sigloch, a tanulmány társszerzője szerint például előre lehet jelezni, hogy hol nyílnak meg az óceánok, és melyek azok a területek, amelyek pusztulásra vannak ítélve.

A lemeztektonika-elmélet már az 1960-as években széles körben elfogadottá vált. Eszerint, ahol a tektonikus lemezek összeütköznek, egymás fölé csúsznak, egymáshoz súrlódnak vagy eltávolodnak, ott zajlik a föld geológiai tüzijátékainak többsége.

1963-ban John Tuzo Wilson kanadai geofizikus felvetette, hogy vulkanikus láncok akkor alakulnak ki, amikor egy tektonikus lemez folyamatosan lebeg a köpeny egyik állandóan forró góca felett. A vulkánok kitörnek, növeksznek, majd elhalnak, amikor a lemez elhagyja a magmatikus forrást.

1971-ben aztán az amerikai William Jason Morgan kijelentette, hogy e forró gócokat a köpeny alsó részéből felfelé szálló rendkívül forró anyagból álló csóvák okozzák. A következő évtizedekben a kutatók megállapították, hogy a csóvák mintegy 200 C fokkal melegebbek az őket körülvevő köpenynél. Amikor elérik a tektonikus lemezek alját, hőjük magmává olvasztja környezetüket. Ugyancsak szállítanak felfelé köpenyanyagot a Föld mélyéből. Ez az anyag a magtól távolodva az enyhülő nyomás miatt szintén megolvad, további magmával táplálva a Föld kérgét. E kombinált magmahozam magyarázza a Föld lemezközi vulkánjainak nagy számát.

Fotó:Flickr

A köpenycsóvák létezésének számos bizonyítékát gyűjtötték össze. Kémiai bizonyíték például a hélium-3 izotóp, amely nagy mennyiségben fordul elő többek között a hawaii Kilauea vulkán lávájában. A hélium-3 ugyanis még Föld keletkezése idején ágyazódott be annak mélyére.

A szeizmikus hullámok is árulkodóak, amelyek a Föld belsején úsznak át, mielőtt a felszínre törnek. A geológiai testeknek, amelyeken áthaladnak, megváltozik a sebességük és az útvonaluk.

A szeizmikus hullámok lassabban haladnak a forró kőzetekben, és már több tanulmány is kimutatta: gyakran lelassulnak az olyan elnyújtott struktúrákban is, amelyek a mély köpenyből indulnak és kapcsolatban állnak a felszíni vulkanikus gócokkal.

A földrengéskutatók felfedeztek két nagy anyaghalmazt – az egyiket Afrika, a másikat a Csendes-óceán alatt – amelyek meglovagolják a köpeny és a mag közti határt. A mély szeizmikus hullámok ezekben szintén lelassulnak, és ez arra utal, hogy e halmazok forró kolosszusok, amelyek együttesen befedik a köpeny és mag határsávjának 30%-át. A két halmaz eredetéről számtalan feltételezés van, egyesek szerint kihunyt tektonikus lemeztöredékek, mások szerint pedig a Theia protoplanéta maradványai, amely összeütközött a még újszülött Földdel és létrehozta a Holdat. Saskia Goes, a londoni Imperial College geofizikusa szerint a Föld köpenycsóváinak többsége az óriás halmazok egyikében gyökerezik.

Ahhoz, hogy a tudósok megalkossák egy csóva képét az alapjától a Föld felszínéig, rengeteg szeizmométert kell szétszórni egy hatalmas területen, hogy a lehető legtöbb szeizmikus hullámot tudják befogni és ezzel a köpeny egy jelentős darabját átláthassák. 2012-ben az Indiai-óceán nyugati részén 57 szeizmométert helyeztek el a tengerfenéken, egy 2000 km2-es résben. Ezt erősítették meg 37 szárazföldi földrengésjelző állomással Madagaszkáron és több kisebb szigeten.

A 13 hónapig tartó megfigyelés célja a réunioni csóva, az elmúlt 100 millió év legjelentősebb tűzkútjának tetten érése volt. A kutatók megdöbbenve látták, hogy a Réunion alatti vékony, függőleges csóva egyszerűen eltűnik az alsó köpenyben.

Azt is megállapították azonban, hogy a felszín alatt 2900 kilométerre lévő afrikai óriás halmaz közepéből egy „fatörzs” emelkedik ki, amely 1500 km mélységig ér el. Onnan ágak nőnek átlós irányban, amíg el nem érik az 1000-800 km-es mélységet. Innentől kezdve az ágak már vékony, függőleges hajtásokat hoztak. E vékony hajtások egyike éri el Réunion alsó részét.

Innen 3000 km-re északnyugatra egy másik átlós ág Kelet-Afrika felé nyúlik, ahol vélhetően egy másik, vagy akár két köpenycsóva létezik.

Csakhogy ezt a struktúrát nehéz volt összeegyeztetni a termodinamika törvényeivel. A forrásban lévő csóvák, amelyek tízszer olyan gyorsan mozognak, mint a köpenyen belül bármi más, beleértve a lemezeket, egyenesen felfelé törnek. A fa struktúrája azt bizonyítja, hogy a köpenyben egy sokkal összetettebb folyamat megy végbe. A kutatók elképzelése szerint az afrikai halmazt, benne a fatörzset és annak csúcsát, a Föld magja hevíti.

Mindezekkel az adatokkal a kutatócsoportnak sikerült megismernie a köpeny egész keresztmetszetét a legnagyobb mélységektől a legfelsőbb szintjéig. Modelljük bemutatja, hogy a fa miként ágazik szerteszét a magból.

Több szakember azonban felhívja a figyelmet arra, hogy ez csak egyike a köpenyben zajló folyamatok lehetséges értelmezésének, a jelenlegi struktúrákról készült pillanatfelvételekből nem lehet egyértelműen következtetni sem arra, hogy miként alakult ki az évmilliók alatt, sem pedig arra, hogy a jövőben miként fejlődnek.

Ha a modell elméletileg helyes, abból egyfelől az következik, hogy a Föld köpenycsóvái nem csupán felfelé áramlanak, másfelől pedig az, hogy a két óriás halmaz kulcsszerepet töltött be a Föld történetében, és ez így lesz a jövőben is. Egyes tudósok gyanítják, hogy az afrikai halmazból kinőtt csóvák törték darabokra az elmúlt 120 millió év alatt a hajdani Gondwana szuperkontinenst. Ausztráliát leválasztották Indiától és az Antarktiszról, Madagaszkárt Afrikától, a Seychelles mikrokontinenst Indiától, és ebből a pusztításból jött létre az Indiai-óceán.

Ha a Kelet-Afrika alatti csóvák így folytatják, akkor ez a régió leszakadhat az afrikai földrésztől és mikrokontinensként lebeghet tovább a Föld legfiatalabb óceánjában.

De az igazi katasztrófát az jelentené sok tízmillió év múlva, ha egy elképzelhetetlen méretű halmaz kiszakadna a középső csúcsból és feljönme egészen a mai Dél-Afrika alapjaiig. Ez kataklizmatikus vulkánkitöréseket okozna.

Ezért is fontos tisztában lenne e csóvák helyzetével és tevékenységével. Ugyanakkor kulcsfontosságú elemei a lemeztektonika folyamatos ciklusainak, amelyek által kiszámíthatatlanul tör a felszínre, vagy tűnik el a szén és a víz. Ez tette lehetővé, hogy egy élhető bolygónk van lélegezhető atmoszférával és kiterjedt óceánokkal. Tehát földi paradicsomunk végsősoron a mélység behemótjainak köszönhető.


Link másolása
KÖVESS MINKET:

Népszerű
Legnépszerűbb

Ajánljuk
Címlapról ajánljuk


TUDOMÁNY
A Rovatból
Különös égi jelenség jön vasárnap napnyugtakor, érdemes lesz az eget figyelni
Este kilenc óra után kell figyelni, és mintegy fél óra lesz arra, hogy a ritka látványosságban gyönyörködhess.


Vasárnap napnyugta körül lesz érdemes kémlelni a nyugati horizontot - írja az Időkép.

A hét utolsó napnyugtáját egy együttállás kíséri majd. A 3,7%-os megvilágítottságú holdsarló és a Merkúr között mindössze 2 fok lesz a látszólagos távolság vasárnap este, mikor a horizont alá bukik a Nap - olvasható az Ng.24.hu oldalon. Kicsivel a nyugati horizont felett lesz megtalálható a Hold, alatt balra kell majd keresni a Merkúrt az égen, mely viszonylag fényes lesz.

Viszont még nem lesz sötét ekkor, ezért nem lesz könnyű megfigyelni a párost. Illetve nagyon alacsonyan járnak majd ekkor a nyugati horizont fölött, így olyan helyet kell választanunk, ahol teljes a rálátás a látóhatárra, valamint tiszta lesz a horizont.

A megfigyeléshez a legideálisabb időpont keleten 21 óra 10 perc, Budapesten 21 óra 20 perc, nyugati határainknál pedig 21 óra 30 perc. Ezt követően a Merkúr nagyjából fél óra múlva, a Hold pedig háromnegyed óra múlva tér nyugovóra.

Az ország nagy része fölött csak kevés felhő lesz az égen a vasárnapi napnyugta idején, így több helyen is szerencsével járhatunk, ha meg akarjuk csodálni a holdsarló és a Merkúr párosát, csupán nyugaton és északnyugaton valószínű felhősebb idő.


Link másolása
KÖVESS MINKET:

Ajánljuk
TUDOMÁNY
A Rovatból
Elhunyt Bernáth László
A sokoldalú tudós, pszichológus 69 éves volt.


Életének 70. évében elhunyt Bernáth László az Eötvös Loránd Tudományegyetem Pedagógiai és Pszichológiai Karának (ELTE PPK) egyetemi tanára – adta hírül az intézmény honlapja.

Az ELTE közleménye szerint Bernáth László harminc éven át volt meghatározó alakja az ELTE-nek, először a jogelőd Bölcsészettudományi Karon, majd a Tanárképző Főiskolai Karon, majd a Pedagógiai és Pszichológiai Kar megalakulásától az Iskolapszichológia Tanszéken, később a Tanácsadás- és Iskolapszichológia Tanszéken dolgozott.

A tudós matematika-fizika szakos tanárként végzett, majd érdeklődése a pszichológia felé fordult, e tárgyból diplomát az ELTE-n, PhD-fokozatot a Pécsi Tudományegyetemen szerzett.

Legnagyobb hatású tudományos közleményei a párválasztást befolyásoló tényezőkkel kapcsolatos eredményeit foglalják össze.

A párválasztási stratégiák evolúciós pszichológiai magyarázatait kutatva pécsi kollégáival együtt kimutatta a nők és a férfiak párválasztási stratégiáinak hátterét adó evolúciós pszichológiai mechanizmusokat.

Matematikai érdeklődése több kutatási témájában is meghatározó szerephez jutott. Így például nevéhez fűződik egy ismert optikai illúzió, az ún. Hermann-rács jelenség korábbi, évtizedeken át elfogadott magyarázatának kísérleti úton igazolt cáfolata, és annak bizonyítása, hogy az illúzió megjelenésének a rácsvonalak egyenessége a feltétele. Emellett számos cikke jelent meg a matematika tanításával és tanulásával kapcsolatban, különösen sokat foglalkozott a stessz és a szorongás tanulásra gyakorolt hatásával – írja az egyetem.

Kiemelkedő szakmai munkájáért és magas szintű tudományos tevékenységéért az évek során számos díjban és elismerésben részesült. 2020-ben lett egyetemi tanár, 2023-ban a Magyar Pszichológiai Társaság Ranschburg Pál Emlékérmet adományozott neki.

Kollégái méltatásában azt írják: „mindig készen állt másoknak segíteni, nyitott és együttműködő személyiségével hozzájárult egy támogató és inspiráló munkakörnyezet kialakításához. Innovatív ötleteivel és lelkesedésével új irányokat mutatott a tanítás és kutatás terén. Empatikus és figyelmes volt kollégáival nemcsak szakmailag, hanem emberileg is. Példaképpé vált.”


Link másolása
KÖVESS MINKET:

Ajánljuk

TUDOMÁNY
Evés után azonnal a vécé felé veszed az irányt? Meglepő, de az agyműködéseddel is kapcsolatban lehet
Egy belgyógyászorvos szerint az étkezést követő hirtelen székelési inger nem feltétlenül utal arra, hogy valamilyen egészségügyi problémánk lenne.


Dr. Joseph Salhab egy TikTok-videóban elmagyarázta, mi állhat annak hátterében, ha valaki mindig azonnal a vécére rohan, miután evett.

Az orvos szerint az étkezést követő hirtelen székelési inger nem feltétlenül utal arra, hogy valamilyen egészségügyi problémánk lenne, például irritábilis bél szindróma (IBS). Ehelyett inkább az agy működésével lehet összefüggésben.

„Amikor eszel, és úgy érzed, hogy rögtön vécére kell menned, ez a gastrocolicus reflex nevű jelenségnek köszönhető” – magyarázta dr. Salhab.

Az orvos elmondta, hogy amikor eszünk, a gyomor feszülése jelet küld az agynak, hogy tele van, és a testnek helyet kell csinálnia az újonnan érkezett ételnek. Ezért kezd el a vastagbél összehúzódni, hogy helyet teremtsen az emésztés során keletkező anyagoknak.

Az Egyesült Királyság egészségügyi szolgálata is megerősítette ezt az elméletet: „Ez egy fiziológiai reflex, amely az étkezés utáni gyomorfeszülésre és az emésztési melléktermékek vékonybélbe érkezésére reagál.”

Dr. Salhab hozzátette, hogy ez a reflex különösen erős lehet reggel, közvetlenül a reggeli után. Bár a székelési inger evés után általában nem utal belső problémákra, az IBS-ben szenvedők érzékenyebbek lehetnek erre a reflexre, ami miatt hasi görcsöket vagy akár hasmenést is tapasztalhatnak.

Az orvos figyelmeztetett, hogy bizonyos ételek és italok súlyosbíthatják a tüneteket, beleértve a szénsavas italokat, cukros italokat, alkoholt, tejtermékeket, sült ételeket, és még néhány citrusfélét is. Ezért ha valaki gyakran tapasztalja ezt a jelenséget, érdemes odafigyelnie az étkezési szokásaira és az étrendjére, hogy elkerülje a kellemetlen tüneteket.

Forrás: LADbible


Link másolása
KÖVESS MINKET:

Ajánljuk

TUDOMÁNY
A Rovatból
Annyira bonyolult az emberi agy, hogy az már szinte a káosz határa – állítják a kutatók
Az agy olyan, mint a legösszetettebb rendszerek. Nagyon hasonlít például a galaxisokra. De minél jobban feltárjuk a bonyolultságát, annál könnyebben tudjuk fejleszteni a mesterséges intelligenciát a jövőben.


Állítólag az emberi agy a legösszetettebb dolog az univerzumban – írja a ScienceAlert. Az agy 89 milliárd neuronja átlagosan 7000 kapcsolatot teremt, egy új tanulmány szerint pedig ezen entitások fizikai struktúrája pengeélen táncolhat.

Az amerikai Northwestern Egyetem két fizikusa, Helen Ansell és Kovács István, a statisztikai fizikát segítségül hívva próbálták megmagyarázni egy magas részletességű 3D térképen a bizonyítható bonyolultságot, nemcsak az emberi agy egy részének, hanem egy egér és egy légy agyának egy részének esetében is.

Magyarázatuk szerint ezeknek az élőlényeknek a sejtszintű keretrendszere azt sugallja, hogy a koponyánkban lévő magas szintű fém egy olyan strukturális csúcsponton van, amely közelít egy fázisátmenethez.

„Ennek a mindennapi példája, amikor a jég vízzé olvad, hiszen ebben az esetben továbbra is vízmolekulákról van szó, de átmennek egy fázisváltáson a szilárd halmazállapotról a folyékonyra”

– magyarázta Ansell.

„Ezzel viszont nem szeretnénk azt állítani, hogy az agy közel áll az olvadás állapotához. Tulajdonképpen nem tudjuk megmondani, hogy az agy milyen két fázis között mozoghat, hiszen ha a kritikus pont bármelyik oldalán állna, akkor nem létezne az agy.”

Korábban végzett kutatásokból az derült ki, hogy a fázisátmenetek fontos szerepet játszanak a biológiai működésben, amire jó példa lehet a sejtek körüli membrán, ami alapvetően a folyékony és szilárd halmazállapot között mozog.

A dolog érdekessége, hogy az idegsejtek ágszerű szerkezete egyfajta fraktálmintázatokként léteznek. A fraktálok, mint amilyenek a hópelyhekben, molekulákban vagy a galaxisok eloszlásában láthatók, a legösszetettebb rendszerekben jelennek meg.

A fizikában a fraktáldimenzió egy „kritikus kitevő”, amely a káosz szélén helyezkedik el, a rend és a rendezetlenség között.

Ansell és Kovács szerint a fraktálok nanoszintű jelenléte a 3D agyi rekonstrukciókban ennek a „kritikusságnak” a jelei.

A kutatás során az adatokhoz való szűk hozzáférés miatt a páros csak egy ember, egy egér és egy gyümölcslégy agyának egyetlen részleges agyi régióját tudta elemezni. De még ezzel a korlátozott képpel is a csapat olyan fraktálszerű mintázatokat talált, amelyek hasonlóak voltak, függetlenül attól, hogy nagyítottak vagy kicsinyítettek.

A különböző idegsejtszegmensek relatív mérete és sokfélesége látszólag minden skálán és fajnál fennmaradnak. A két kutató szerint ez a „Goldilocks-effektus” valószínűleg minden állati agy univerzális irányító elve lehet, bár ennek bizonyítása sokkal több kutatást igényel.

„Kezdetben ezek a struktúrák egészen különbözőnek tűnnek – egy légyagy nagyjából akkora, mint egy kis emberi neuron. Mégis eglepően hasonló tulajdonságokat találtunk”

– mondta Ansell.

További tanulmányokra van szükség annak meghatározására, hogy ez a megosztott kritikus pont létezik-e az állati agy teljes skáláján.

Természetesen az adatok korlátozottsága még mindig fennáll, de jelenleg nagy erőfeszítés történik az idegtudományban az agy anatómiai és kapcsolati térképének a lehető legnagyobb részletességgel történő feltérképezésére.

Nemrég rekonstruáltak egyetlen köbmilliméternyi emberi agyat, és tavaly elkészült az első teljes térkép a gyümölcslégy agyáról, valamint egy sejtszintű térkép az egér agyáról.

„A [strukturális szint] egy hiányzó darabja volt annak, ahogyan az agy bonyolultságára gondoltunk. Ellentétben egy számítógéppel, ahol bármilyen szoftver futhat ugyanazon a hardveren, az agyban a dinamika és a hardver erősen összefügg”

– magyarázta Kovács István.

Ansell szerint a csapat eredményei új utat nyitnak meg egy egyszerű fizikai modell felé, amely leírhatja az agy statisztikai mintázatait. Egy nap az ilyen teljesítmény segíthetné az agykutatást és az mesterséges intelligencia rendszereinek képzését.


Link másolása
KÖVESS MINKET:

Ajánljuk