Magyar kutatók dolgoznak azon, hogy egyszer magnéziumból készülhessenek a repülőgépek
A prágai Károly Egyetem és az ELTE kutatói közösen együttműködve tiszta magnéziumon figyelték meg, hogyan változik az anyagok alakja és szerkezete.
"Kutatócsoportunkban adott a lehetőség, hogy kis méretű mintadarabokat alakítsunk ki és deformáljuk. A magnéziummal cseh kollégák foglalkoznak régóta, nekik ez egy specialitásuk. Ez a legkisebb sűrűségű fém, amit szerkezeti anyagként lehet használni, de ezt a fajta anyagot így még nem vizsgálta senki" - magyarázza Dr. Ispánovity Péter Dusán, a Mikromechanika és Multiskálás Modellezés Kutatócsoport vezetője, az ELTE TTK Anyagfizikai Tanszékének adjunktusa. Az eredményeikről a kutatók a Materials&Design folyóirat májusi számában számoltak be.
"A magnézium kristályszerkezete speciálisabb az alumíniuménál. Ezáltal a deformációs mechanizmusai is bonyolultabbak, így nehezebb belőle jobb szerkezetű anyagot csinálni. Ezeknek a deformációs mechanizmusoknak a pontos megértése azonban segíthet abban, hogy kifejlesszünk a gyakorlatban is használható, kisebb sűrűségű szerkezeti anyagokat" - mondja a kutatás vezetője.
"A fémeknek az a nagyon fontos tulajdonsága sok más kemény anyaggal ellentétben, hogy maradandóan képesek vagyunk formálni. Kemény szerkezet például az üveg is, de a kialakított forma után nem vagyunk képesek mondjuk hajlítani, mert eltörik. A különbség az, hogy a fémet tudjuk, hiszen el tudunk görbíteni egy kanalat, ami úgy marad, és nem törik el. Az, hogy maradandó alakváltozásra is képes legyen egy anyag, a különböző felhasználási eljárásokban nagyon fontos tulajdonság" - magyarázza Dr. Ispánovity Péter Dusán.
Maradandó alakváltozásra azért képes a fém, mert kristályos a szerkezete, ugyanis szabályos elrendezésben helyezkednek el az atomok benne. A különböző deformációs mechanizmusok következtében a kristályszerkezet meg tudja az alakját változatani. "A legjellemzőbb egy úgynevezett diszlokációs mechanizmus, amivel a fémek többsége deformálódik. A másik ilyen speciális folyamat az ikresedés."
Ezzel kísérleteztek a magyar kutatók.
A kísérlet során a magnéziumban a maradandó alakváltozást ikresedési folyamattal érték el, amely során két, egymáshoz képest tükrözött kristályrácsot választottak el. Egy lapos gyémántfej segítségével nyomták össze a mintadarabot. A deformáció során világosabb tartományok - ikresedett régiók - jelentek meg az anyagban, amelyek lavinaszerűen alakulnak ki, majd egy bizonyos méretet elérve megáll a növekedésük.
"Az anyag rétegenként átugrik egy sort, mindig a következő atomsor rendeződik egy új helyre, ezáltal megváltozik a fém alakja. Ami fontos, hogy ez a deformáció csak bizonyos irányokban tud megtörténni, mivel a kristályszerkezete nem olyan szimmetrikus, mint például az alumíniumnak, ezért csak bizonyos irányokba szeret deformálódni, az ikresedés nem tud minden irányba végbemenni" - mondja a kutatás vezetője.

"A minta kialakításához olyan mikroszkópra van szükség, amiből csak néhány van Magyarországon. Ebben nem csupán felnagyítva tudunk megvizsgálni egy adott anyagot, hanem ionokkal bombázva el is tudjuk porlasztani azt. Magát az eszközt, amivel a deformációt végeztük, mi fejlesztettük ki, majd behelyeztük ebbe a mikroszkópba."
A deformációs eszköz, mely jelenleg egyedülálló Magyarországon, alkalmas mikronos méretű anyagok nanométer (azaz néhány atomtávolság) pontosságú deformációjára, miközben az ehhez szükséges parányi erőhatásokat is képes megmérni.
Az ELTE Anyagtudományi Kiválósági Program keretében dolgozó kutatók következő lépésben az általuk készített eszköz piaci alkalmazását tervezik, ezenkívül a mintákat felmelegített állapotban, különböző hőmérsékleten vizsgálják majd.
Te mit csinálnál másképp? - Csatlakozz a klímaváltozás hatásairól, a műanyagmentességről és a zero waste-ről szóló facebook-csoportunkhoz, és oszd meg a véleményedet, tapasztalataidat!