TECH
A Rovatból

A világ első, pilóta nélkül repülő, autonóm drónrajával a madarak viselkedését mintázzák magyar kutatók

Dr. Vásárhelyi Gáborral fizikussal, az ELTE tudományos főmunkatársával beszélgettünk. Felléptek II. Erzsébet előtt, a Buckingham-palota parkjában, de sokat dolgoznak természetvédelmi célokból is.


Az ELTE Biológiai Fizika tanszékének kutatói úttörők a drónrajok irányítási technológiájának fejlesztésében, amit állatrajok csoportos viselkedése inspirált. Több mint 10 éven keresztül vizsgálták azt, hogy az állatok miként kommunikálnak egymással, hogyan hoznak döntéseket, milyen hierarchia uralkodik csoportjaikban, és hogyan tudnak egyéni döntésekből egységes álláspontot kialakítani. 2014-ben a feltérképezett viselkedésmintákat átültették mesterséges egyedekre, így jött létre a világ első pilóta nélkül repülő, autonóm drónraja. Az izgalmas újdonságról Dr. Vásárhelyi Gáborral fizikussal, az ELTE tudományos főmunkatársával beszélgettünk.

– Meséljen kicsit a biológiai fizikáról! Szerintem sokak előtt ismeretlen ez a terület.

– A kutatásaink az ELTE Biológiai Fizika Tanszékén indultak. Ez egy nagyon izgalmas tanszék, úgynevezett interdiszciplináris, tehát tudományok közti. Vagyis tudományok együttműködésével kutatható dolgokkal foglalkozunk.

Jelen esetben a természet megértésével foglalkozó biológiai tudományok mellé társulnak a statisztikus fizika eszközei, módszerei. Például, amíg a biológusok önmagukban személyes megfigyeléssel, jegyzetekkel gyűjtenek adatot arról, hogy az állatok hogyan viselkednek, addig mi megpróbáljuk technologizálni és automatizálni ezt a folyamatot.

GPS vevőket fejlesztünk, ami madarakra szerelve tárolják, hogy az élőlények merre mennek, videokamerával veszünk fel állati viselkedést, és aztán mesterséges intelligenciával elemezzük nagy adathalmazon.

Ezáltal sokkal több adathoz juthatunk, és ezeknek a kiértékelése is statisztikai fizikai eszközökkel történik.

– Részben megválaszolta a következő kérdésemet is, hogy miként lehet megfigyelni madárrajokat. Ezek szerint GPS-szel.

– Több lehetőség is van. Az egyik módszert, amit mi nem, de például római kutatók seregélyekkel csinálnak, hogy felvételeket készítenek a madarakról több irányból, és a felvételek összevetéséből próbálják rekonstruálni a madarak helyzetét 3D-s térben.

Mi a GPS-es módszerrel elsősorban olyan madarakat tudtunk megfigyelni, amelyek valamilyen formában barátságban vannak az emberrel. A hortobágyi madárkórházban nevelt gólyákkal kezdtük. Ezek szelíd gólyák, akikhez oda lehet menni, rájuk lehet tenni az eszközt.

Postagalambokkal is dolgoztunk, amelyek szintén szelídített állatok, de nagyon nagy repülési teljesítményre képesek, és nagyon jó navigációs képességeik vannak.

– Az egy dolog, hogy meg tudják figyelni a madarak mozgását. De miként lehet tanulmányozni azt, hogy hogyan navigálnak és kommunikálnak? Leegyszerűsítve: hogyan beszélik meg egymással a madarak, hogy hova mennek?

– Sajnos a madarak beszédét nem értjük. Valószínűleg sokkal több mindenről, és sokkal részletesebben beszélnek, mint ahogy azt mi képzeljük. Ezért csak implicit, tehát nem direkt módon lehet az ő kommunikációjukkal foglalkozni.

Ennek az egyik módja a statisztikus adatelemzés. Ha van egy madárcsoportunk, és a csoport minden tagján van egy adatrögzítő, akkor mérni tudjuk, hogy ha a csoport egyik tagja jobbra fordul, akkor a többiek ezt a jobbra fordulást hozzá képest előbb vagy később kezdik meg. Ebből információ származik arról, hogy ezt az irányváltást ki kezdeményezte, mik a hierarchikus kommunikációs sorrendek.

Ezt nyilván nem egyetlen kanyarodásból vezetjük le, hanem sok-sok napon keresztüli adatgyűjtésből, statisztikus átlagokkal. Azt például már tudjuk ebből, hogy vannak jobb navigációs képességű madarak, akik inkább hoznak jó döntéseket, és vannak gyengébb képességűek.

Ők is hoznak döntéseket, de rájuk senki nem figyel.

– Hogy dől el, hogy ki navigál? Hasonló, mint az alfahím kiválasztása?

– Ez egy nagyon érdekes megfigyelésünk volt: az, hogy ki a navigátor, az független attól, hogy ki az alfahím. Tehát a földön van egyfajta dominancia, amit más állatoknál is ismerünk. De a levegőben lévő döntési hierarchia az ettől teljesen független.

Az emberek esetében ismerünk hasonlót. Ugyanaz a személy sokszor egészen máshol áll a hierarchiában a munkahelyén, mint a családjában, vagy mondjuk a kórusban, ahova jár.

– Tulajdonképpen miért nem tudunk a madarakkal kommunikálni? A mai technika mellett nyilván nem okoz gondot rögzíteni és analizálni a madarak által kibocsátott különböző hangokat. Nem lehetne ezeket a hangokat visszajátszani nekik, és a reakcióik alapján kikövetkeztetni, hogy melyik mit jelenthet számukra?

– Az állati kommunikáció feltérképezéséről inkább etológusokat kellene megkérdezni, nekem nem elég nagy a tudásom ezen a területen. De személyes érzésem az, hogy sokkal részletesebben beszélgetnek az állatok, mint azt mi hisszük, intelligenciájuk magasabb, mint gondoljuk, és talán pont azért nem gondoljuk őket elég intelligensnek, mert nem értjük a beszédüket.

Hasonló ez, mint amikor valaki egy idegen nyelvű országban él: az anyanyelvi beszélők sokszor kevésbé intelligensnek tekintik, mert nem tudja olyan jól kifejezni magát az ő nyelvükön.

Erre vannak kutatások is.

Például mostanra egyértelmű lett, hogy bizonyos bálnák és delfinek néven nevezik egymást.

Nyilván, hogyha tudják egymás nevét és rokoni viszonyaikat, akkor nagyon sok mást is tudnak, ami kontextus, és amiről lehet beszélgetni.

Nagyon várom a mesterséges intelligencia ilyen irányú alkalmazását, hogy megpróbáljuk nagy adathalmazon, valamilyen öntanuló rendszerrel, lényegesen részletesebben megismerni más fajok nyelvét. Ez nagyon izgalmas terület.

– Pilóta nélküli, autonóm drónrajokról beszélünk. Tehát nem távirányítóval, a földről irányítják őket, hanem egymással kommunikálva alakítják az útvonalukat.

– Igen. A kutatás első része az állati viselkedés megértése volt, a második része pedig ennek leutánozása ugyanolyan felépítésű rendszerben. A madarakat sem a földről irányítják, hanem minden egyes madár agyában működik egy döntési és környezetérzékelési mechanizmus. Ugyanígy a drónjaink is el vannak látva környezetérzékelőkkel, kommunikációs eszközökkel, amivel tudnak egymással egyeztetni, és rendelkeznek egy döntési algoritmusstruktúrával, amivel az egyéni és csoportos döntéseket meg tudják hozni.

– De azért gondolom, valamiféle kontrol mégiscsak van, elvégre nem repkedhetnek a drónok csak úgy a vakvilágba, amerre a kedvük tartja.

– Az irányítást raj szinten kell elképzelni. A „Mit?” kérdését az ember tudja megmondani, a „Hogyan?” kérdését pedig a drónok találják ki. Például meg tudom mondani a drónoknak, hogy menjetek egy adott pont fölé. Vagy keressetek egy ilyen és ilyen jellegű tárgyat.

Azt viszont a drónok egymás közt tudják „megbeszélni”, hogy ezt a feladatot hogyan végzik el.

Nyilván arra is van lehetőség, hogy egyénileg belenyúljunk egy-egy drón mozgásába, felülbírálva a döntéseit. A többieknek ilyenkor automatikusan alkalmazkodnia kell ahhoz, hogy valami megváltozott.

– Mik a hasznosítási lehetőségei ennek a technológiának?

– A nemzetközi sikereken felbuzdulva 2015-ben alapítottuk a tanszéken a CollMot Kft-t azzal a céllal, hogy a drónrajok üzleti hasznosítását körbejárjuk. Az első lehetőség, amiben sok drónra volt szükség, az a szórakoztatóipar lett.

A hadászati alkalmazás mellett a mai napig ez az egyetlen felfutott üzletág, ahol nagyon sok drónt használnak egyszerre. Egyrészt nagyon látványos és a nagyközönséghez könnyen eljuttatható, másrészt viszonylag egyszerű dolog. A drónoknak nem kell semmilyen bonyolult méréstechnikai feladatot ellátniuk, „csak” világítaniuk.

– Mik voltak a legemlékezetesebb drónshow-k?

– Nagyon sok helyen jártunk a világban, és itthon is kezd egyre népszerűbbé és elérhetőbbé válni ez a fajta látványosság. Olyan helyekre juthattunk el, ahová átlagember be sem teheti a lábát. A pályafutásunk egyik csúcspontja a királynőnek adott drónshow volt a Buckingham-palota kertjében.

Mostanáig három alkalommal vettünk részt a budapesti, augusztus 20-i tűzijáték kiegészítő elemeként. Felemelő érzés, amikor 200-500 ezer ember nézi élőben a bemutatónkat.

– Felmerült az is, hogy a drónok hossztávon akár ki is válthatnák a tűzijátékot. Mik az előnyei?

– A tűzijátéknál az egyes világító részecskéknek az útját nem lehet programozni. Itt viszont minden egyes fénypont útját pontosan meghatározhatjuk térben és időben. Ez nagyon nagyfokú szabadságot ad és új művészeti kifejezési felületet jelent. Akár személyre szabott üzenetet is át lehet adni egy hatalmas, égi „kivetítőn”.

– Adja magát a kérdés, hogy költség szempontból a drónshow hogy viszonyul a tűzijátékhoz?

– Mindkét látványosság elég széles tartományban skálázható. Lehet kisebb méretű drónshow-kat rendelni kisebb költséggel, és lehet gigantikusat. A világrekord az valahol ötezer drónnál tart. Jelenleg a drónshowknak a belépési küszöbe valamivel magasabb, mint a tűzijátéknak, de a technológia automatizálásával mi is folyamatosan arra törekszünk, hogy minél szélesebb körben elérhető legyen.

– A tüzijátékkal kapcsolatban az egyik legfontosabb ellenérv, hogy megijeszti az állatokat. A drónoknak milyen negatív környezeti hatása van? Gondolok itt például a madarakkal, repülő rovarokkal való balesetekre.

– A drónok határozott előnye, hogy nem kell rakétákat fellőni a földről. Lehet a drónokra is tűzijáték elemeket szerelni, de azt sem kell kilőni, csak leszórni, annak pedig nincsen hangja. De ha csak a ledlámpákat használjuk, akkor a drón még káros anyagot sem bocsájt ki ott helyben.

Nyilván minden technikai eszköz használata valamilyen mértékű kompromisszummal, szennyezéssel jár, például a drónok akkumulátorokat használnak aminek előállítása során környezeti kár keletkezik.

De a lokális szennyezés elkerülhető.

A drónok valós veszélye, hogy forgó alkatrész van bennük. A gyorsan forgó propellerek a gyorsan haladó autókhoz hasonlóan a repülő kisrovarokra nézve jelenthetnek kockázatot, a helyzetet pedig némiképp ronthatja, hogy sok rovar vonzódik a fényes objektumokhoz az éjszakai sötétben, így talán a villogó drónokhoz is. De az általános emberi fényszennyezéshez képest elenyésző az az 5-10 perc és fénymennyiség, amíg egy ilyen drónshow lemegy.

A madarakra vonatkozóan vannak olyan jelentett balesetek, hogy azok a nagyobb testű ragadozómadarak, akiknek a fészke közelében elrepülnek a drónok, rátámadnak a gépekre, és azok lezuhannak. Ez viszonylag ritka, a hatóságok egyre inkább igyekeznek elzárni a védett költőhelyeket a drónozóktól.

Egyébként sokat dolgozunk a drónokkal természetvédelmi célból is, védett madarak fészkelőhelyeinek és állományának felmérését sokszor végezzük nemzeti parkokkal együttműködve drónnal. Az a tapasztalatunk, hogy viszonylag ritka a konfliktus. A madaraknak elég magas az ingerküszöbük. Ők a levegő urai és hamar felmérik, hogy egy repülő objektum jelent-e veszélyt számukra.

Olyan méretű drónoktól, amiket mi használunk, nem szoktak félni, inkább érdeklődően jönnek a közelükbe.

Link másolása
KÖVESS MINKET:

Népszerű
Legnépszerűbb

Ajánljuk
Címlapról ajánljuk


TECH
A Rovatból
Bejelentették: megvan, ki viszi fel a második magyar űrhajóst
Kapu Tibor 14 napot lesz a Nemzetközi Űrállomáson. Az már megvan, hogyan jut ki, de a pontos időpontot még nem jelentették be.


Végleges a megállapodás az Axiom Space-szel, a második magyar űrhajóst az amerikai cég soron következő Ax-4-es küldetésén viszik fel az űrbe – jelentette be Ferencz Orsolya, a Külgazdasági és Külügyminisztérium űrkutatásért felelős miniszteri biztosa.

Kapu Tibor 14 napot tölt majd a Nemzetközi Űrállomáson

– mondta Ferencz. Részleteket nem árult el arról, hogy ott mit csinál majd a magyar űrhajós, de állította: Kapu ez alatt a két hét alatt nemzetközi szinten is versenyképes pozícióba juttatja Magyarországot az űrbizniszben.

A pontos indulási időpontot egyelőre nem lehet tudni, azt az Axiom Space és a NASA közösen fogja meghatározni.


Link másolása
KÖVESS MINKET:

Ajánljuk
TECH
Magyarországra is megérkezett a fizetős Viber
Havi 999 forintért például szöveggé konvertálhatjuk a hangüzeneteket, megszabadulunk a reklámoktól és korlátlan matricát kapunk.


Magyarországon is elindítja Rakuten Viber a Viber Plus prémium szolgáltatást exkluzív funkciókkal és testreszabási lehetőségekkel - írja a Média1.

A Viber alapfunkciói persze továbbra is ingyenesek maradnak, viszont most már itthonról is elérhető a fizetős prémium szolgáltatásuk, Viber Plus. Ezt 999 forintos havidíjért adják, és

olyan exkluzív funkciókat kínálnak mint a hangüzenetek szöveggé konvertálása, a láthatatlan üzemmód, a hirdetésmentesség, az üzenetek nyom nélküli törlése, egyedi alkalmazásikonok, személyre szabott támogatás, korlátlan számú matrica.

A Viber Plust fokozatosan vezetik be a magyarországi felhasználók számára, akik az alkalmazás jobb alsó sarkában található „Továbbiak” menüponton keresztül érhetik el a szolgáltatást. A frissítés előtt elérhető összes funkció, beleértve a szöveges üzenetküldést és a hívásokat, továbbra is teljesen ingyenesen lesz.


Link másolása
KÖVESS MINKET:

Ajánljuk

TECH
Már nem sci-fi: itt az elképesztő sebességű net, amivel egy sebész akár egy kontinens távolságból hajthat végre egy műtétet
A fejlesztés minőségi változást hozhat a hétköznapi emberek életében is, azt is elmondták, hogy mi mindenre képes már most.


800 Gbps sebességű, az átlagos magyar internetnél 4400-szor gyorsabb összeköttetést sikerült kiépítenie a tudósoknak a svájci LHC (Nagy Hadronütköztető) és a vele dolgozó holland adattároló között – derül ki a BBC cikkéből. Joachim Opdenakker és munkatársa, Edwin Verheul azért vágott bele a munkába, hogy az LHC kísérleteinek méréseit minél gyorsabban továbbíthassák, hogy a tudósok villámgyorsan hozzáférjenek az LHC kísérleteinek eredményeihez.

„Volt ott pacsizás”

– idézi a lap Opdenakkert. Februárban tesztelték először a rendszert, amelynek 1650 kilométer hosszan kell adatokat küldeni, Genfből Párizson, Brüsszelen keresztül egészen Amszterdamig. A jeleket optikai megoldással továbbítják – ilyen távolságon példátlan az elért 800 Gbps sebesség. Opdenakker erről azt mondta:

„A távolság miatt ennek a fénynek az erőssége csökken, így különböző helyeken kell erősíteni.”

Az LHC 2029-re tervezett frissítése még több adatot fog generálni, a mostani mennyiség ötszörösét. Az új rendszer minden jel szerint ezzel is megbirkózik majd. Ennek pedig hamarosan a hétköznapokban is érezni lehet majd a hatását:

Az eredményeik nyomán nagyságrendekkel nőhet a hétköznapi emberek által használt internet sebessége is.

Ez pedig nemcsak gyorsabb és megbízhatóbb internetkapcsolatot jelent majd, de például erősebb adatvédelmet is lehetővé tesz. Emellett olyan orvosi fejlesztések alapja lehet, mint a robotsebészet, amikor egy sebész akár egy kontinens távolságból hajt végre egy műtétet, távirányított gépek segítségével.

Bár a 800 Gbps sebesség brutálisan gyors, vannak ennél is durvább eredmények. Egy japán kutatócsoport például elérte a 22,9 Pbps sebességet, míg az Aston Egyetem kutatói 402 Tbps sebességet értek el egy 50 kilométer hosszú optikai szálon. Ezek a rekordok azt mutatják, hogy a technológia szédítő tempóban fejlődik, és a jövőben még nagyobb sebességekre lesz képes.


Link másolása
KÖVESS MINKET:

Ajánljuk

TECH
Szeretnéd végigcsinálni a Mario Bros videójátékokat? Van egy rossz hírünk: a matematikusok szerint lehetetlen
Több bizonyíték utal arra, hogy a játék a végtelenségig tart, így matematikai értelemben nem csinálható végig egyik Super Mario-játék sem.


Egy nemrég megjelent tanulmány szerint a „New Super Mario Bros. óta megjelent 2D Mario játékok közül egyiket sem lehet végigcsinálni, kivéve a Super Mario Wondert.” A tanulmányt az MIT Számítástudományi és Mesterséges Intelligencia Laboratóriumának Hardness Group kutatócsoportja készítette – írja az IFLScience.

A felvetett probléma lényege, hogy a játék esetében lehetetlen előre kiszámítani, hogy bizonyos pályák teljesíthetőek-e, ennek meghatározására csak egyetlen mód akad: az, hogy ténylegesen is megpróbáljuk végigjátszani őket.

Ugyanakkor még a Super Mario Wonder esetében is

„vannak olyan bizonyítékok, amelyek arra utalnak, hogy megoldhatatlan a játék, [...] ám még nagyon új, ezért további kutatásokra van szükség a játék mechanikájának jobb megértéséhez, hogy újabb állításokat tehessünk”

– magyarázta Erik Demaine, az MIT számítástechnika professzora.

Nem egyszerű bizonyítani egy játék esetében, hogy valóban teljesíthető-e az. „Az alapvető ötlet az volt, hogy Braid – az MIT egyik hallgatója – minden adott szintet az adott pályán lévő ellenségek számával ábrázol.”

A tanulmány szerint minden pályán – függetlenül attól, mekkora is az – tetszőleges számú ellenség kerülhet elő. Aminek eredménye az lehet, hogy a játék (ahogyan az éjjel...) soha nem ér véget, mert az algoritmus állandóan újabb pályákat és ellenségeket fog generálni.

A kutatócsoport létrehozott egy számlálógépet, ami képes volt bonyolult számításokat végezni, és ezáltal a tudósok ki tudták mutatni, hogy ezen pályák megoldhatóságának kikalkulálása olyan nehéz feladat, amit még a legnagyobb teljesítményű számítógép sem tud megoldani véges időn belül.

„Az alapgondolat az, hogy csak akkor tudod megoldani az adott Mario pályát, ha ez a konkrét számítás befejeződik. És tudjuk, hogy nincs mód annak meghatározására, hogy ez bekövetkezik-e, így arra sincs mód, hogy meghatározzuk, megoldható-e a pálya”

– jegyezte meg Demaine.

Azt nem tudni, vajon a szórakoztató játék közben hányan gondolnak bele abba, hogy milyen elképesztő matematikai problémával állnak is szemben, az azonban biztos, hogy a problémán dolgozó kutatók tovább vizsgálják a lehetőségeket.


Link másolása
KÖVESS MINKET:

Ajánljuk